Blockchain Security in 30 Minutes (not a cryptocurrency investment talk)

Parsia Hakimian March 12th 2018

Who is this guy

. Appsec Consulting @ Synopsys

- EDA software company you have not heard of
- Software Integrity Group (SIG)
 - Cigital <-- I was here
 - Blackduck
 - . Coverity
 - Defensics

What this is NOT!

. How can I get rich with Bitcoin? Time travel.

- . How do I keep my private keys safe? Paper wallet.
- . What should I mine? Doge coin.

First!

- . Do I need a blockchain? Not Really!
- . Reinventing databases; a tragedy in two parts

A decentralized git repositories registry on blockchain could save us all. Is anyone working on something similar? 1:10 AM - 28 Feb 2018	 GitHub goes down. I push my repo on another origin, even self hosted. I update the blockchain registry. The dev that included my library asks the distributed registry where to pull the code. The registry provides the new git repo. Everything still builds.
	0.52 Alvi - 1 Iviai 2010

Blockchain or Glorified Distributed DB?

. Data you want to store:

- Dank memes, events, transactions, network logs, etc.
- . Ledger:
 - Event log
- . Distributed Ledger:
 - Distributed and updated event log
- . Blockchain
 - An implementation of a distributed ledger

Most important slide

Blockchain System == Distributed Network

- Solves some problems
- Introduces new challenges

. Attacks/Concerns from literature apply

- Sybil attack
- Fault tolerance
- CAP theorem

Blockchain

Source: NISTIR 8202 - Blockchain Technology Overview - January 2018 Draft

- . Write-once distributed ledger
- . History is verifiable
- . HashChain

Problem 0-0: Integrity

- . HashChain does the trick
- . Good hash function:
 - SHA/Scrypt/Ethash/Equihash/etc...

Hash Function

Any-length input > fixed-length output

- Diffusion
 - Smallest change in input > completely different output.
- Pre-image resistant
 - Hard to predict input that results in a specific output.
- Collision resistant
 - Hard to find two inputs that produce in the same output.
- Second pre-image resistant
 - Having one specific input, it should be hard to find a collision.

Problem 0-1: Integrity of Transactions

Merkle Tree Root Hash

Source: NISTIR 8202 - Blockchain Technology Overview - January 2018 Draft

Problem 1: Who can join?

. Permissioned

- Central authority vets nodes
- Not all nodes can do everything
- Enterprise blockchains
 - Hyperledger Fabric IBM & Linux foundation
 - Quorum JPMC

. Permissionless

- Everyone can submit/read/write
- Most Cyptocurrencies

Federal Register on a Blockchain

• Federal Register

- Data: Rules and regulations
- Submit transaction: Office of the Federal Register
- Writer: Government Publishing Office or GPO
- Reader/Verifier: Everyone
- . Public permissioned blockchain
- . This is a horrible idea!

Problem 2: Who's who?

. Permissioned

- Central vetting authority
- Certificates

. Permissionless

- Private/Public key
- Public key > hash > stringify > address
 - Stringify: Base56
- Wallets/transactions can be traced

Problem 3-0: Verifying Transactions

. Verify validity

- Sign transaction with private key
- Verify with public key
- Use public key to derive address

. Verify balance

- Calculate (in – out) x coins

Problem 3-1: Theft

- . Private key access == Owner
- . No undo SFYL
 - Immutable ledger
- . Exchange theft
 - Bitconnect (straight up Ponzi scheme) -
- . Solution:
 - 2FA
 - Paper wallets/Multi-signature wallets

"Bitconnect Guy"

Nodes

. Full Node

- Store complete history of blockchain

. Mining Node

- Full node + maintain blockchain
 - Create new blocks

. Lightweight Node

- No mining or storing
- Submit transactions
- Pass data around

Problem 4: Distributed Backups

. Solution

- Full/Mining nodes store everything

. Challenge

- Waste of bandwidth
- Bitcoin blockchain 110+ GB

Problem 5: Maintaining the Network

. Permissioned

- Out-of-band incentives
 - Law: GPO
 - Business agreements: Banks

. Permissionless

- Award Cryptocurrency
 - How bitcoin is created
- New challenge
 - Who gets to create new blocks?

Problem 6: Malicious Nodes

. Permissioned

- Nodes can go rogue/malicious
- Nodes can be faulty

. Permissionless

- Untrusted nodes
- Everyone is malicious

. Solutions?

- Distributed Networks literature

Academic Ivory Tower Byzantine Generals

. Byzantine Generals' Problem (1982)

- Leslie Lamport, Robert Shostak, and Marshall Pease
- Reaching Consensus == Network agreeing on something

Academic Ivory Tower

Byzantine Nodes

. Game of Telephone

- Malicious node: Evil me
- Faulty node: Non-native speaker me

. Byzantine Nodes

- Nodes with Byzantine Fault
- Display different symptoms to different observers
 - Unintentional: Faulty nodes
 - Intentional: Malicious nodes

Academic Ivory Tower

Byzantine Failure

. Byzantine Failure

- A network requiring consensus, failing to perform its service because of Byzantine nodes.

. Game of Telephone – Order Pizza

- First person decides toppings
- Whisper
- Last person orders
- Failure: Ordered pizza does not have correct toppings

Academic Ivory Tower Byzantine Fault Tolerance

- Reaching consensus with Byzantine Nodes
- . Evading Byzantine Failures
- . Impossible in our Telephone game
 - One path from source to destination
- . Solution: Ensure message integrity
 - Checksums (e.g. CRC32)
 - Works with non-malicious nodes (e.g. electronics)
 - Cryptographic Signing
 - Prevent tampering by malicious nodes

Problems 5 and 6 Revisited

- Nodes in Blockchain: Byzantine Nodes
- Consensus: Who mines next block
- Not agreeing on next miner: Byzantine Failure
 - Blockchain will not be maintained
- . Consensus Mode: Byzantine Fault Tolerance
 - Proof of Work (PoW)
 - Proof of Stake
 - Round-Robin

Proof of Work (PoW) Consensus Model

- . Nodes compete to solve a puzzle
- . Puzzle
 - Difficult to solve but easy to verify (NP problem?)
 - Previous puzzles solves must not help with new ones
- First node to solve makes new block
- . Challenge
 - Waste of time and energy

Bitcoin PoW

• Puzzle

- Hash(block header) < 0000xxxxxxxx
- Hash starting with 4 zeros or more

. Mining

- Create candidate block
 - Choose & verify transactions from unspent transaction pool
 - Transaction fees
- Choose nonce -> Calculate hash -> Check hash

. Adjustable difficulty

- Change number of zeros

Problem 7: Conflicts

. Decentralized networks have lag

- Different unspent transaction pools

. Two valid blocks mined > Two blockchains

- Longer is chosen
- If same length, wait for next block
- Incentivizes nodes to accept valid blocks and mine on top of them

Problem 8: Sybil Attack – Double Spend

- . Also Majority Attack or 51% Attack
- . Ignore valid blocks by others
 - Keep cryptocurrency rewards
 - Fix: Conflict resolution strategy
- . Create longer chain with invalid transactions
 - Double spend

Sybil Attack - Double Spend Fix

. Computing: Proof of Work

- Hard to gain control of 51% hash rate
 - Hashing is a constrained resource

. Ownership / Commercial Interest: Proof of Stake

- More stake in system == invested in its success
- . Hierarchical Trust: Authority
 - Law and order Federal Register

Current and Future Work

. Enterprise blockchains

- Hyperledger: Fabric
- Quorum

. Smart contracts

- Ethereum Quorum
 - Solidity/LLL/etc.
 - Ethereum Virtual Machine (EVM)
- Hyperledger: Fabric
 - ChainCode (Golang)

Questions?

. More reading:

- NISTIR 8202 Blockchain Technology Overview
- "Do you need a blockchain?" by Karl Wüst, Arthur Gervais
- <u>https://parsiya.net/categories/blockchain/</u>
- Hyperledger: Fabric
 - https://github.com/hyperledger/fabric
- Quorum
 - https://github.com/jpmorganchase/quorum